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Abstract – This paper will describe the Mobility Open 
Architecture Tools and Simulation (MOAST) environment. 
This environment conforms to the NIST 4D/RCS 
architecture [3] and allows simulated and real architectural 
components to function seamlessly in the same system. This 
permits not only the development of individual components, 
but also allows for component performance metrics to be 
developed and for the components to be evaluated under 
repeatable conditions. The environment is composed of 
high-fidelity and low-fidelity simulation systems, a detailed 
model of real-world terrain, actual hardware components, a 
central knowledge repository, and architectural glue to tie 
all of the components together. This paper will describe the 
components in detail and provide an example of how the 
environment can be utilized to develop and evaluate a single 
architectural component through the use of repeatable trials 
and experimentation that includes both virtual and real 
components functioning together.   
 

1. INTRODUCTION 
The development of an embodied multi-agent system is 
truly a multi-disciplinary endeavor.  It requires skills and 
expertise in fields as varied as sensor processing, knowledge 
representation, planning, execution and control, and even 
basic auto-repair. In addition, the “multi” in multi-agent 
implies that there are multiple platforms that may require 
multiple safety personnel and a large amount of real estate 
to perform over. A lighthearted, but realistic view of the 
development cycle may be summarized by: 

1. Develop a cool new algorithm for accomplishing 
task ‘x’. 

2. Code an implementation of algorithm ‘x’. 
3. Get code to compile for real vehicle(s). 
4. Assemble team to test algorithm on real vehicle(s). 
5. Immediately discover implementation bug, 

hardware failure, or software change to supporting 
subsystem, dismiss team and recode algorithm or 
fix vehicle(s). 

6. Reassemble team and search in vain for exact same 
scenario that caused crash (literally or figuratively) 
in 5. 

7. Repeat from 3. 
 
As seen from the above summary, much of the development 
cycle is out of the control of the algorithm developer. 
Vehicle up-time, safety personnel availability, and course 
availability play a large role in the development schedule. In 

addition, it may be difficult to isolate failures due to a lack 
of repeatable trials and the use of software modules that are 
being co-developed (which module has the bug?). 
 
The need to develop on real hardware may severely limit the 
ability of expertise or resource constrained institutions to 
fully participate in the field. In addition, research in a 
particular discipline may be constrained by the current state-
of-the-art in unrelated disciplines. For example, when 
operating on a real system, the planning community can 
only construct plans based on features that the sensor 
processing community is able to detect. It is difficult or 
impossible to answer the question of how the system’s plans 
would be affected if it could see feature ‘x’ at range ‘y’. 
Because of this, planning researchers are unable to explore 
behaviors that require next generation sensor processing 
until after that generation has arrived. 
 
Traditionally, many of these problems have been addressed 
by using a simulation environment for algorithm 
development and testing. Simulation has benefits that 
include reduced competition for scarce resources, no risk of 
harm to personnel or equipment, the ability to add as yet 
undeveloped capabilities to subsystems, and the ability to 
perform repeated tests over vast and varied terrains from the 
comfort of your own desk. As a result, an individual code 
module can be thoroughly tested and understood before 
moving to real hardware.  
 
Numerous simulators have been developed over the years to 
assist in the development, testing, and evaluation of 
autonomous vehicles.  These simulators have provided a 
cost effective solution to the development of autonomous 
vehicles by alleviating the cost of maintaining an actual 
vehicle, test course, and safety facilities in which to 
experiment with the systems.   
 
Most simulators developed in the past are dedicated to 
testing entire autonomous systems under a specific task in a 
static environment, or a single subsystem of the autonomous 
system under varied conditions [1,10].  Simulated Highways 
for Intelligent Vehicle Algorithms (SHIVA) [15], for 
instance, provided realistic sensor models, communication 
infrastructure, and a variety of driver models that allowed 
for the testing of tactical decision-making in a mixed traffic 
environment.  SHIVA was designed to allow for migration 
of the subsystems being tested in the simulation 
environment to the actual vehicle platforms. The View 
Simulation System (VSS) [10] provides high performance 
graphic facilities to test vision-based autonomous systems. 
While both of these systems provide high-fidelity testing of 
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certain components, neither provides realistic mobility 
models or computation facilities to adequately simulate 
complexities that exist in real world environments. 
 
One Semi-Automated Forces (ONESAF) [11] expanded the 
realm of simulation environments by providing an open, 
modular architecture that simulates vehicle behaviors, 
sensors, and weapon systems in a larger multi-agent 
environment.  ONESAF sacrifices fidelity in order to divert 
its computational facilities to controlling multiple entities 
autonomously in the environment.  Due to the inherent 
nature of such a simulation package, ONESAF availability 
is limited to U.S. government distribution.   
 
Recently, simulation environments have attempted to 
leverage existing technologies to achieve a general-purpose 
environment that is capable of simulating the complexities 
of multi-agent, feature rich environments.  Gamebots [8] is a 
multi-agent test-bed for AI that was built on the Karma 
game engine of the popular video game Unreal Tournament.  
The system provides a client-server architecture that allows 
“bots” and humans to interact.  Gamebots uses built-in 
scripting languages and 3D modeling faculties to allow a 
developer to create or modify the simulated environment.  
USARSim [16], which in turn was built on Gamebots, 
makes effective use of the rich kinematics models that exist 
in the Karma game engine to simulate Urban Search and 
Rescue environments.  USARSim and others have extended 
the Gamebots API to provide virtual sensors, decision-
making facilities, and worlds that accompany the simulation 
environment.   
 
As more agents are simulated in larger and more complex 
worlds, the computational complexity of the simulation 
grows.  Distributed Virtual Simulation Environments 
(DVSE) [5] have been developed to manage this 
computational complexity.  UTSAF [9,12] is a simulation 
bridge between the Unreal game engine and ONESAF. This 
bridge parses the standardized Distributed Interactive 
Protocol (DIS) used by ONESAF to facilitate the 
communication and participation of both simulators in a 
single hierarchical distributed virtual simulation 
environment. This hierarchical distributed model provides a 
high fidelity simulation environment that precisely 
simulates entities in a specified sphere of influence, while a 
low-fidelity simulator simulates a larger region.  
Player/Stage [7] is another example of a hierarchical 
distributed virtual simulation environment that was 
developed as a package and does not require the use of a 
separate bridge for the integration of both the high- and low-
fidelity simulators.   
 
A typical development cycle with the use of a simulator 
may be represented by: 

1. Develop cool new algorithm for accomplishing 
task ‘x’. 

2. Code an implementation of algorithm ‘x’. 
3. Get the code to compile for simulation engine. 
4. Test/debug code in simulated environment. 

5. Recode implementation to work with real robot(s). 
6. Assemble team to test code on robot(s). 
7. Find that simulated world does not accurately 

represent real world and that algorithm 
redevelopment is necessary. 

8. Go to “Classic” Development and Test Cycle. 
 
As shown above, there is still no replacement for testing the 
algorithms on the real hardware. The reason for this is that 
simulation environments are typically composed of worlds 
that do not include false alarms or missed detections, have 
perfect command execution, and ideal system performance. 
The result of this is that an algorithm that works perfectly in 
simulation is not guaranteed to work at all under actual 
environmental conditions, platform performance, and 
command execution. Therefore, step 5 in the development 
cycle calls for the simulated algorithm to be ported and run 
on the actual robot hardware. The problem with this is that 
differences in interfaces or knowledge requirements often 
prevent plug-and-play operation of an architectural 
component from the simulation environment to the real 
hardware. For many simulation-system/real-hardware 
combinations, substantial code and command interface 
changes must be made. These changes may introduce new 
bugs and may also lead to the discovery that algorithms 
have become dependent on unrealistic or non-existent 
attributes from the simulation environment.  
 
The next evolutionary step in the distributed simulation 
models is to incorporate real hardware in virtual 
environments.  Player/Stage and RAVE [6] are two 
simulation environments that provide numerous controllers 
for a variety of vehicle platforms.  The real virtual 
simulation environments permit seamless integration and 
transparent transference of data between the real and 
simulated components.  This allows for developers to take 
advantage of the real mobility characteristics of vehicle 
platforms while still providing a controlled environment.   
 
At the National Institute of Standards and Technology 
(NIST), the Mobility Open Architecture Simulation and 
Tools (MOAST) environment has been developed as a 
real/virtual environment that allows researchers to 
concentrate their efforts in their particular area of expertise. 
This environment conforms to the NIST Real-Time Control 
System (RCS) architecture [3] and allows simulated and real 
architectural components to function seamlessly in the same 
system. This permits not only the development of individual 
components, but also allows for component performance 
metrics to be developed and for the components to be 
evaluated under repeatable conditions. The environment is 
composed of high-fidelity and low-fidelity simulation 
systems, actual components under test, a detailed model of 
real-world terrain, a central knowledge repository, and 
architectural glue to tie all of the components together. This 
paper will describe the components in detail and provide an 
example of how the environment can be utilized to develop 
and evaluate a single architectural component through the 



use of repeatable trials and experimentation that includes 
both virtual and real components functioning together.   
 

2. THE MOAST ENVIRONMENT 
The MOAST environment strives to seamlessly integrate 
simulation subsystems with real robotic hardware 
subsystems. The goal is to allow the individual subsystems 
to each perform in the area where and when they do best. 
For example, simulation systems can replicate multiple 
platforms for the development of multi-platform behaviors. 
They allow for repeatable events, and may provide detailed 
system/event logging. In addition, by simulating the results 
of sensor processing, the potential benefits of detecting new 
features or utilizing novel sensing paradigms may be 
measured. 
 
However, there is no substitute for real mobility, sensing, 
and communications. Therefore, when available, real system 
components/subsystems must be able to plug into the 
MOAST environment and replace simulated subsystems. 
This is made possible through the architectural glue of the 
environment. This glue includes a reference model 
architecture that includes well defined interfaces and 
communications protocols, and detailed specifications on 
individual subsystem input/output (IO). The Real-Time 
Control System (RCS) reference model architecture has 
been selected for the MOAST reference model architecture. 
All communications between modules is accomplished over 
Neutral Messaging Language (NML) channels [14] that 
function as the communication medium.  
 

Architectural Glue 
 In order to guarantee real-time operation and decompose 
the robotic system into manageable pieces, it was necessary 
to utilize a hierarchical architecture that was specifically 
designed to accommodate real-time deliberative systems.  
The RCS reference model architecture is a hierarchical, 
distributed, real-time control system architecture that meets 
this need while providing clear interfaces and roles for a 
variety of functional elements [2,3]. 
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Figure 1.  Internal structure of a RCS_NODE (from [3] p. 28). 

Through RCS, a clear system hierarchy exists that provides 
control ranging from that of individual actuators up to 
groups of 10s or 100s of platforms. Each level of the 

hierarchy is composed of the same basic building blocks 
illustrated in Fig. 1. These building blocks include behavior 
generation (task decomposition and control), sensory 
processing (filtering, detection, recognition, grouping), 
world modeling (knowledge storage, retrieval, and 
prediction), and value judgment (cost/benefit computation, 
goal priority). While the architecture specifies the general 
content and frequency of communications, it does not 
provide details on the actual message format. The NML 
toolkit is utilized to fill in this information. 
 
The NML toolkit provides general templates for command 
and status messages that are transmitted between RCS 
modules and automatic tools for communication code 
generation based on these templates. As the MOAST 
environment is implemented for different domains, these 
templates must be flushed out and completed for every 
module in the system. As will be discussed later in this 
paper, the MOAST environment has been implemented for 
on- and off-road robotic vehicles and detailed specifications 
exist for all of the vehicle environment communication 
channels. During actual operation, JAVA1 based tools are 
provided that allow for automatically generated status 
windows that provide a complete picture of the 
communications hierarchy as well as the content of every 
command and status message that is flowing through the 
system. 

Central Knowledge Repository 
The reference model architecture must provide for a means 
of coordination amongst peers as well as command and 
control of subordinates in order to provide coherent multi-
agent behaviors. While it is feasible that coordination may 
be accomplished through the use of status channels, the 
MOAST environment provides a central knowledge 
repository as an additional means of coordination. This 
knowledge repository is based on domain specific schemas 
that are implemented through the use of a central SQL 
server. In addition to schemas, the knowledge repository 
contains policies that uniquely specify which module is 
authorized to populate each knowledge field. The populated 
schemas constitute a knowledge base that contains 
information ranging from a priori environmental data and 
module capabilities data to real-time state and status 
information. A complete knowledge base for a specific 
multi-agent ground robot system has been developed and 
will be discussed in later sections.  

Detailed Terrain Model 
A priori environmental data contained in the central 
knowledge repository is derived from a detailed terrain 
model contained in the MOAST environment. This model 
may be decomposed into a portion that is known a priori 
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to explain our research. Such identification does not imply 
recommendation or endorsement by the National Institute of Standards and 
Technology, nor does it imply that the software tools identified are 
necessarily the best available for the purpose. 



and a portion that will be discovered through normal agent 
operation. A priori information may be preprocessed and 
populated into the central knowledge repository where it is 
available to all subsystems. Discoverable knowledge is 
operated on by simulated sensors and appears as the results 
of sensor processing that may be reported thorough NML 
status channels or through a central knowledge repository 
knowledge base. 

Actual Components 
The central theme of the MOAST environment is the ability 
to test actual individual hardware/software modules. The 
only requirement for operating under the MOAST 
environment is conformance to the MOAST 
communications protocols and formats. The NML 
communications libraries are freely available from NIST in 
source format as well as precompiled for numerous 
operating systems2. Since all modules conform to the same 
communications protocols and formats, the module under 
test will be unaware of which participating modules are real 
and which are simulated. 
 

 
Figure 2: MOAST implementation including simulated (light) and 
virtual (dark) components. 

                                                           
2 See http://www.isd.mel.nist.gov/projects/rcslib/ 

Simulation Systems 
As with actual components, the only requirement on 
simulation systems is conformance to the MOAST 
communications protocols and formats. Currently, 
simulation systems have been used to simulate the results of 
sensor processing and platform mobility. By simulating 
sensor processing results, experiments may be performed 
that utilize repeatable events from as yet unrealized sensor 
capabilities, or results from sensors that may be too 
expensive, large (weight, volume, or power), or delicate to 
place on mobile platforms. Simulated mobility allows varied 
repeatable terrain and the inclusion of multiple non-existent 
platforms. 

3. IMPROVISED EXPLOSIVE DEVICE 
IMPLEMENTATION 

Under funding from the Army Research Laboratory (ARL), 
C. Shoemaker program manager, the MOAST environment 
has been implemented to develop the behaviors that a 
platoon of robotic vehicles capable of neutralizing an 
improvised explosive device (IED) would need to perform. 
In performing this mission, a group of robotic agents must 
identify and neutralize an IED, otherwise known as a 
roadside bomb. A conventional solution (implementation 
solely on real hardware) is not possible due to the fact that 
there is no known sensor for detecting/neutralizing an IED 
and that it would be too dangerous to intentionally place 
bombs on roadways around our research facility. A block 
diagram of the implemented system is shown in Fig. 2. In 
the diagram, the light boxes are simulated components and 
the dark boxes are real systems. The system is composed of 
three vehicles; all of which have simulated sensing and low-
level mobility. 

 Architectural Glue 
One of the first jobs for the system designer is to determine 
the module interfaces. Whenever possible, it is desirable to 
reuse existing interfaces since this allows for the reuse of 
entire code modules. In the case of the IED mission, many 
of the mobility system behaviors are identical to previously 
designed road driving systems that have been constructed 
under the MOAST environment [4]. In fact, the entire 
subsystem echelon mobility code was used without 
modification. As one moves higher in the hierarchy, skills 
and behaviors become more specialized for the individual 
mission and new behaviors must be added to augment 
already existing skills. For example, the existing vehicle 
echelon mobility planner was able to plan to drive along a 
section of roadway, however no behavior had yet been 
created for cautiously driving around a suspected  IED. The 
existing interface specification must be updated and the 
corresponding controllers augmented with this new 
behavior. A graceful failure mode of controllers not 
compliant with the new specification is still possible 
through the report of an “unknown command” over the 
systems status channel and error log. 



Central Knowledge Repository 
As with the module interfaces, the MOAST environment 
allows for the reuse of knowledge components that have 
been previously developed for other applications.  Table 1 
depicts the knowledge bases contained in the knowledge 
repository and their origin. 
 
Table 1: Knowledge bases that form the central knowledge repository. 
Knowledge base Purpose Origin 
Road Network 
Database 

Contains a 
hierarchical 
decomposition of 
road networks 
from constant 
curvature lane 
segments to 
complete 
roadways. 

Reusable 
general purpose 
knowledge base 
originally 
developed for 
on-road driving 
under DARPA 
MARS project, 
PM Doug Gage 
[13]. 

Vehicle 
Characteristics 

Contains average 
values for common 
types of vehicles 
and vehicle class 
relationships. 

Reusable 
general purpose 
knowledge 
base. 

Vehicle Sensor 
Characteristics 

Contains average 
values for sensor 
ranges, fields of 
view, etc. 

Reusable 
general purpose 
knowledge 
base. 

Vehicle Weapon 
Characteristics 

Contains weapon 
lethality, range, 
etc.  

Reusable 
general purpose 
knowledge 
base. 

Vehicle Status Contains mode, 
health, and 
location 
information. 

Reusable 
general purpose 
knowledge 
base. 

IED Class 
Characteristics 

Contains expected 
blast radius, safe 
approach radius, 
etc for various 
types of IEDs. 

Developed for 
IED mission. 

Vehicle Team 
Composition 

Requirements on 
sensing and 
mobility to fill 
different roles in 
mission (Leader, 
observer, …). 

Reusable 
general purpose 
knowledge base 
extended for 
IED mission. 

IED Instance 
Characteristics 

Specifics about 
potential IEDs 
(class, location, 
status, … ) 

Developed for 
IED mission. 

Error Log Provides global 
logging of error 
conditions. 

Reusable 
general purpose 
knowledge 
base. 

 
As is shown in the table, the majority of the knowledge 
bases are general purpose and may be used for multiple 
domains. In addition to storing a priori and dynamic 

information about objects, the knowledge repository is 
useful as a means of coordination and synchronization 
amongst peers. For example, the vehicle echelon mission 
executor utilizes the vehicle status knowledge base to 
synchronize sensing mode changes with changes in mobility 
modes.  

Detailed Terrain Model 
A detailed terrain model has been generated of the NIST 
campus. This terrain model consists of a bare earth elevation 
array with post spacing of 45 cm (1.5 feet) and root mean 
square error (RMSE) of 15 cm (6 inches), color 
orthophotography with pixel resolution of 7.5 cm (0.25 
feet), and comprehensive vector data. The vector data 
includes items such as all road edges, parking lots, parking 
lot strips, buildings, sidewalks, lamp posts, signs, etc. 
 
Incorporating a high-fidelity terrain model into the MOAST 
environment allows for algorithm performance evaluation 
and the ability for mobility planning systems to incorporate 
items that are not yet detectable by current state-of-the-art 
sensor processing algorithms. For example, as the vehicle 
drives through the real world, detected road edges may be 
compared with those in the terrain model to measure the 
performance of the road detection algorithms. For the case 
of the IED mission, it is desirable to have simulated sensor 
processing coupled to real mobility. This allows the high-
level behaviors to function even though there are currently 
no sensor processing algorithms capable of distinguishing 
classes of IEDs. 

Actual Components 
As shown in Fig. 2, the majority of the system elements 
above the subsystem echelon were real components running 
on actual system hardware. Through the use of the MOAST 
global world model and interface specifications, module 
functionality is identical to a completely implemented 
robotic platform.  

Simulated Components 
For this particular implementation of the MOAST 
environment, virtual sensing was provided through 
interfaces and behaviors added to the OTBSAF simulator. 
This simulation system provided IED behaviors (they 
explode if approached before disarming, techniques for 
disarming, etc.), sensor output that included terrain and 
entity features for multiple classes of sensors, and a 
visualization of the mission as it progressed. 
 
Low level mobility simulation was performed by an 
internally developed simulation system. In the near future, 
we will be interfacing to a commercial simulation package 
that will provide physics based simulation of vehicle 
motion. 
 



4. SUMMARY AND FUTURE WORK 
This paper has presented a novel approach to system 
development. Under this approach, a new development 
cycle may be coined as follows: 

1. Develop cool new algorithm for accomplishing 
task ‘x’. 

2. Code an implementation of algorithm ‘x’. 
3. Get code to compile for simulation engine. 
4. Test/debug code in simulated environment. 
5. Run identical code on real robot. 
6. Assemble team to test code on robot. 
7. Run only as much code as necessary to validate 

algorithm on real robot (everything else is 
simulated). 

8. Algorithm runs on real robot on first try! 
 
In the near future, this approach will be verified when the 
code developed for the IED mission is run (without porting) 
on our NIST HMMWV. Additional efforts are also being 
directed at developing more complete interfaces for the 
various modules and on incorporating a commercial off the 
shelf physics based mobility simulator. This simulator will 
function off of the MOAST terrain component and will obey 
standard MOAST command and control communication 
channels. 
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